OSAGE RIVER BASIN 107

06917630 EAST FORK DRYWOOD CREEK AT PRAIRIE STATE PARK (Ambient water-quality monitoring network)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- November 1993 to current year.

REMARKS.--Several periods of no flow during the year in which samples are collected at Fleck Creek at Prairie State Park (06917635). Fleck Creek data is located in the partial records section of this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE		TIME	DI: CHAR INS' (CUB FE: PE: SECO!	GE, I. IC TEME ET ATU R WAT ND) (DEG	CI PER- CO IRE DU PER AN F C) (µS	PE- V FIC V DN- F JCT- (S JCE	PH NATER NHOLE FIELD STAND- ARD NNITS)	DI SOL	GEN, S- VED /L) 00)	SOL (PE CE	S- I VED R- NT UR- I ON)	OXYG DEMAI CHEI ICAI (HIC LEVEI (mg/I	ND, M- L GH L) (L) 1	COLI FORM FECA 0.7 µm-M COLS 00 m	4, TOO AL, FI 7 KF 4F (CO 3./ I nL) 100	TREP- COCCI CCAL, AGAR OLS. PER (mL)	LINITY WAT WH TOT FET FIELD mg/L as CaCO ₃	3
MAR 18		1430 0		10 10	.0	218	7.3		7.0		62			K2		K13	82	
APR 01		1205	0.	11 14	. 0	195	7.1	9	. 4		90			35	70	680	39	
24 MAY		1000 0.76		76 14	. 0	172	7.3	6	. 9		66		K		26	150	20	
07 JUN		0900	14	18	.5	108	7.0	5	. 9		62		12	11	LO	170	16	
19	19 093		0.50		1.5	133	6.8	2	2.7		31		13 11		00	100	40	
28		1100 1		23	.5	110	7.3		7.2		85		2		LO :	600	32	
DAT	ГЕ	WH FI (mg/ HC	ATE TER IT ELD	CAR- BONATE WATER WH IT FIELD mg/L as CO ₃) (00447)	NITRO- GEN, NO ₂ +NO ₃ TOTAL (mg/L as N)	GEN, NITRIT TOTAI (mg/I as N	GE AMMO L TO L (m	TRO- EN, ONIA TAL g/L s N) 610)	MONI ORGA TOT (mg	AM- IA + NIC IAL J/L N)	PHOS PHOR TOTA (mg, as	US AL /L P)	PHOS PHORU ORTH TOTA (mg/ as:	JS O AL 'L P)	HARD- NESS TOTAL (mg/L as CaCO ₃) (00900	D: SO (as	LCIUM IS- LVED mg/L s Ca) 0915)	
MAF	R 18		100	0	<0.020	<0.010	0.	040	0.	92	<0.02	20	<0.01	.0				
APF	R 01		49	0	0.080	<0.010	0.	030	0.	84	0.0	50	0.03	30				
	24		24	0	<0.020	<0.010	0.	050	0.	61	0.04	40	<0.01	.0				
JUL	07 N		16	0	0.150	<0.010	0.	020	0.	72	0.0	50	0.01	.0	34		8.8	
1 AUC	19 3	47		0	0.080	0.010	0.	0.960		2.1		20	0.020		44		11	
2	28		36	0	<0.020	<0.010	0.	030	0.	45	<0.02	20	<0.01	.0				
DAT	ГE	S D SO (m as	GNE- IUM, IS- LVED g/L Mg) 925)	SODIUM, DIS- SOLVED (mg/L as Na) (00930)	POTAS- SIUM, DIS- SOLVEI (mg/L as K) (00935)	SULFAT DIS- SOLVE (mg/I as SO ₄	TE RI - D ED SO - (m ₁) as	LO- DE, IS- LVED g/L C1) 940)		E, S- VED J/L F)	AT 18	OUE 30 . C S- VED 'L)	RESID TOTAL AT 10 DEG. SUS- PENDE (mg/ (0053)5 C, D L)	ALUM- INUM, TOTAL RECOV- ERABLI (µg/L as Al)	I S S (a	LUM- NUM, DIS- OLVED µg/L s A1) 1106)	
ZAM) MUL	07		3.0	6.3	2.3	28	3	3.0	<0.	10	9	92	1	.1	400		220	
1	19		4.0	6.4	3.6	14	1	0	0.	10	8	36	1	.8	210		26	
	DATE	TO RE ER (μ as	MIUM TAL COV- ABLE g/L Cd) 027)	CADMIUM DIS- SOLVED (µg/L as Cd) (01025)	COPPER, DIS- SOLVEI (µg/L as Cu) (01040)	DIS- SOLVE (µg/L as Fe	TO - RE ED ER (μ ₂	AD, TAL COV- ABLE g/L Pb) 051)	SOI (µg	S- VED /L Pb)	MANG NESI SOLV (µg/ as I	S- VED 'L Mn)	MERCU TOTA RECO ERAE (µg/ as H	AL OV- BLE L Ig)	ZINC, TOTAL RECOV- ERABLI (µg/L as Zn (01092	- E S ()	INC, DIS- OLVED 1g/L s Zn) 1090)	
ZAM)	Y 07		<1	<1.0	1.7	350)	2	3	3.0		30	<0.1	.0	9		5.0	
JUI			<1	<1.0	<1.0	340		2		. 0		00	<0.1		8		2.9	

 $\hbox{K--Results are based on colony count outside the acceptable range (non-ideal colony count).} \\$